

CLICK

A n e w p r o g r a m m i n g l a n g u a g e f o r d e v e l o p i n g

s o f t w a r e r o u t e r s

V I S H A L P R A J A PA T I
April 10, 2009

CLICK

A n e w p r o g r a m m i n g l a n g u a g e f o r d e v e l o p i n g

s o f t w a r e r o u t e r s

MTECH SEMINAR REPORT

BY

VISHAL PRAJAPATI

08305030

UNDER THE GUIDANCE OF
PROF. D MANJUNATH

AND
PROF. ANIRUDDHA SAHOO

D E P A R T M E N T O F C O M P U T E R S C I E N C E A N D E N G I N E E R I N G
I N D I A N I N S T I T U T E O F T E C H N O L O G Y , B O M B A Y

M A Y 2 0 0 9

A B S T R AC T

This seminar report describes Click - a new software architecture for building flexible and
configurable routers. In recent years, several proposals emerged, and a very promising architecture is the
Click Modular Router, which is not only easily extensible, but also very effective. When Click software is
running as a Linux kernel module on conventional PC hardware, the achievable maximum loss-free
forwarding rate for IP routing is 357,000 64-byte packets per second, more than commercial routers with
far greater cost. The configuration optimization tools can raise this rate to 446,000 64-byte packets per
second, enough to handle several t3 lines and 95% of our hardware's apparent limit. The click is made of
individual basic blocks called elements, of which each performs simple routing functions like packet
classification, queuing, scheduling, and interfacing with network devices. The elements are connected to
each other by the links. These links are the route that a packet may follow while it is being analyzed or
being modified. A router configuration is a directed graph with elements as its vertices and this flow of
the packet as its edges. The language, in which these configurations are written is completely descriptive
and support the user-defined abstractions. The simplicity of the language makes it readable by humans
and can be understood or manipulated very quickly using tools.

Click Modular Router Webpage: http://read.cs.ucla.edu/click/

A few figures in the paper are taken from the PhD thesis of Eddie Kohler.

C O N T E N T S

1 Introduction .. 1
2 Architecture ... 1

2.1 Element .. 2
2.2 Ports ... 3
2.3 CPU Scheduling .. 3
2.4 Configurations and Installation .. 3

3 Click Programming language .. 4
3.1 Example of Click Router ... 4

4 Extensions of Element .. 6
4.1 Differentiated services ... 6
4.2 Ethernet Switch .. 8
4.3 Mobility Extension ... 8

5 Evaluation ... 9
5.1 Forwarding Rate ... 9
5.2 Comparison between IP router configuration and non-IP router

configuration ... 10
5.3 Forwarding Cost Per Element .. 10

6 Limitation of Elements ... 11
7 Related Work .. 11
8 Conclusion ... 12

A Bibliography .. 13
B Appendix ... 14

1

1. Introduction

As now the routers are increasingly becoming
more and more powerful, our expectations are
also increasing with that. Initially the routers
were just the hardware that was simply
forwarding the packets that they have got. As
routes evolved the responsibilities of them also
increased. Boundary routers, which lie on the
borders between organizations, must often
prioritize traffic, translate network addresses,
tunnel and filter packets, and act as firewalls,
among other things. Furthermore, fundamental
properties like packet dropping policies like
RED and Differentiated service also need to be
implemented at the router only. As the
responsibilities are increased the per packet
processing need also increased but as we have
faster routers we have survived with that but as
now the internet traffic is increasing day by day
we have to develop the newer ways to handle
that traffic. The most of the router are having
very inflexible and static design so that the third
party tool or the administrators may not be able
to get the full utilization of the capability of the
router. Sometimes the router needs to be
extended with some functionality but for that
we need to access some of the router interfaces
that are very crucial, sometime it either they
does not exists or they do not exists at right
point.

In 1999 Eddie Kohler comes up with the new
idea of using the general purpose computer as
the router. He and some other colleagues at
Laboratory for Computer Science, MIT have
developed a new language called Click[1,2]. They
kept the language completely declarative and
simple so that it can be used easily. This paper
describes the working with the click and will
give the examples about how to develop the
router quickly. The Click is modular language
which is made up of fine-grained basic blocks
called elements. This basic element are doing
very small job in terms of processing or

modifying the packets like increasing the TTL
value, generate the error based on the flags of
the packet. The Click is totally inspired by the
actual flow of packets so they have make the
Click is such a way that it actually simulates the
flow of the packets in actual router. If you look
at the router configuration of that we are
developing via Click is a entirely a directed
graph, so each and every path that a packet can
take any of the path from input to the first
element to the output of the last element. In the
directed graph the vertices are the elements and
the edges are the routes that a packet can choose
any path base on the properties of it.

The paper is formatted in the following way. In
section 2, we will be describing the architecture
of the click and will discuss about the limitation
of the element, the installation procedure in
Linux and, how to compile and install the
configuration in the usermode and kernel mode.
The section 3 will cover the programming
concepts of the click and will show how to make
the router with simple example and gradually
make a complete full-fledged working router. In
section 4, we will discuss about the different
extensions of the routers that can be created
using Click. In section 5, we will discuss some of
the experiments that Eddie Kohler and his
colleagues have performed and evaluated the
Click framework, and then will summarize.

2. Architecture

The basic block element is the main and centre of
the entire language. It is created to do very
simple functions at a time. These fine-grained
elements can be connected to each other in any
specific order and can be used as a single
element and can do complex computations like
IP routing. The click’s configuration is a directed
graph where the vertices are the elements and
the edges represent the flow of path that a
packet can take while traversing through that
element.

2

Figure 1: The Push and Pull port operations

2.1 Element

So as we know that the element is the basic
block that performs the some operation on the
packet and based on the packet property it
forwards the packet to the next element via any
of the output links that it have. Figure 2 shows
the simple router element called Counter which
simply counts the packet that passes through it.

Figure 2: Basic Element

Element Class: It specifies the behaviour of
the element like how many ports it has, what is
the port type. It’s is the basic structure that
every element should follow to have unified
interface to access it from any other element.
Each Click element is class corresponds to a
subclass of the C++ class Element, which has
20 virtual functions. But as the all the function
are not necessary to implement by all the
elements. We need to implement only 3 most
important functions to devolve any new
element, push, pull and run_scheduler.
Following box shows the implementation of a
simple element Hub that simply broadcasts the
packet to all the outputs that it has got from any
of the input with the subnet mask.

Ports: The ports are the connectors to the
element these are the entry and exit paths of the
packet to and from element. We will describe
the ports in details later.

class Hub : public Element { public:

 Hub();

 ~Hub();

 const char *class_name() const
 { return "Hub"; }

 const char *port_count() const
 { return "-/="; }

 const char *processing() const
 { return PUSH; }

 const char *flow_code() const
 { return "#/[^#]"; }

 void push(int port, Packet* p);

};

Configuration String: This is an optional
parameter that is used to initialize the basic
element properties to improve the performance.

3

Method Interface: These are the methods that
are provided by the particular element for inter
element communication used for runtime
arbitrary operation.

2.2 Ports

The click is the completely inspired by the
natural flow of the packet, that a packet goes
while it is processed by a traditional router. So
the designers have developed two kind of the
ports push and pull ports. Figure 1 shows the
operations of the push and pull connections.

Push ports: The push ports are designed for
simulating the sender initiated operations where
there are no time constraints. The element is
performing the operation only when the new
packet is arrived at the input port and then after
processing it, it forwards it to the next element.

Pull Ports: These are the ports that are designed
to simulate the receiver initiated operations and
where the time constraints are important. For
example the Ethernet port is not always ready to
send the data, so to send data from Ethernet
port the element should always ask for the data
from its previous element from its output port.
This link is created via pull link.

2.3 CPU scheduling

Click schedules the CPU internally. Click has its
own task queue where the one and only thread
that runs the click on CPU. Click The task
queue is scheduled with the flexible and
lightweight stride scheduling algorithm. Here the
tasks are elements that want the CPU to process
the packets that it has got. This process starts
from the first element that gets the packet from
outside world. It process the packet and places
the packet on next elements input port so the
next element is put on the queue so that it gets
the CPU time and can now process the packet.
This process continues until that packet goes
out from the last element. And this process also

performed for each packet that comes in at the
first element. Click runs on a single thread so
any push or pull packet transfer method must
return to its caller before another task can begin.

2.4 Configurations and installation

Click can run on two modes User-level and
Kernel mode. This user-level driver can be used
for the debugging purpose because any bad
configuration that loaded by mistake to the user-
level driver does not cause any effect on the
normal communication because Click runs as a
process on the Linux system and each of the
Click packet still goes through the Linux
networking stack. But the Kernel level driver
replaces the complete network stack so that you
can now run your own configuration and can
make your PC works as a full-fledged router.

The installation of the router configuration can
be done with simple steps. The router
configuration file is a simple text file that is sent
to the driver to parse. The driver then parses the
definition, checks it for errors, initializes every
element, and puts the router on line. It breaks
the initialization process into stages. In the early
stages, elements set object variables, add and
remove ports, and specify whether those ports
are push or pull. In later stages, they query flow-
based router context, place themselves on the
task queue, and, in the kernel driver, attach to
Linux kernel structures.

The user-level configuration can be run by
simply calling the click application; it processes
the configuration and puts the router online, and
more than one configuration can be run
simultaneously. While in kernel level installation,
as the kernel can run only one configuration at a
time, we cannot run more than one
configurations at a time. To install a
configuration, the user writes a Click-language
description to the special file /proc/click/config.
The installation of the new configuration
destroys the older router configurations. But
Click supports the two techniques for changing
the new configuration without losing the older
information.

4

Handlers: The Click elements can have any
number of the handlers. And use can see this as
the files in the Linux’s /proc folder as the files
and can access any of the handlers. So we can
use this files for the configuring the elements
dynamically. For example, the Meter element has
the functionality to send the limited number of
the packets/second through it. So we can very
well change the parameter dynamically so that it
can send more or less number of packets.

Hot Swapping: The handlers can support the
much of the finicality but adding a new element
or removing an element from the existing
configuration is very much complex to
implement so the other option is the hot
swapping. This finality is provided by Click but
we need to be very cautious while developing
the new configuration for hot swapping because
the incorrect installation of the hot swapping
configuration costs the loss of the data at the
time in process at different elements. In this
process the new configuration takes places the
states of the older click elements to the newer
one but for that your elements name should not
different and there parent class should not
differ.

3. Click programming language

This Click language is wholly declarative. It has
features for declaring and connecting elements
and for designing abstractions called compound
elements, and that is all. Element classes are
written in C++ using an extensive support
library. The Click router configurations are also
simple enough so that they can be optimized by
the tools that can process the router
configuration files.

The box is showing the syntax of the
configuration that is used to create routers.

The connection statement “T [0] -> eth(0);”
creates a connection from T's output port 0 to

eth(0)'s input port. Elements must be declared
before they are used in connections.

T :: Tee(2) // declaration

T [0] -> eth(0); // connection

T [1] -> Discard; // connection

3.1 The simple example of router

Now let’s look at some simple configurations of
the router that can be created by the Click
environment.

Example 1: This example cannot be said as a
router but as a start let’s just have an example
where we are just counting the number of
packets coming in and then discarding the
packets. Figure 3 shows the actual router
configuration. And the following block shows
the configuration file of the same example.

Figure 4: Simple router - Example – 1

FromDevice(eth0) -> C :: Counter;

C -> Discard;

By looking at the configuration file and the
graphical representation it can be seen that there
is much same. So now onwards we will be giving
only the graphical representation.

Example 2: Let’s extend the same example with
adding the virtual queue that implements a

Figure 3: Simple Router Example - 2

5

version of Stochastic Fairness Queuing. Here
the HashDemux element divides the flow of the
packets in two flows based on the parameters
that are passed to the element on the time of
initialization and after that the RoundRobin
element simply collects the packets from the
both the queue one after another. As you can
see here the connectors in the early part up to
the queue are shown as the filled triangle inside
the element box because these are the push links
and the connectors after the queue are hollow
because the links on that path are pull type.
Because the ToDevice element sent the packet
to the Ethernet port so we don’t have any
control over the Ethernet port behaviour. So
whenever the device becomes ready to send the
packet the ToDevice element pulls the packet
from the previous device. And this sequence
initiates the other flow of the task queue in the
CPU scheduling algorithm.

Figure 5: Simple Router Example – 3

Example 3: Now let’s add the Classifier[3]
element, this element simply processes the
packet and sends the packet on the one of the
output port based on the contents packet
contains and the initialization parameters that
given by the user. Also lets add the priority

scheduler that always seeks the packet from the
its first input port and if there is no packet on
that input port then only it searches the packet
on its second input port.

Example 4: Now let’s add the packet size
constraints and let’s limit the network traffic
from the ports.

Figure 6: Simple Router Example – 4

So in figure 6 we are showing that the classifier
distributes the packets in 4 different flows inside
the configuration. The first flow coming out
from the out port 1 goes through Meter element
that has the property of sending maximum fix
number of packets from it. So the element has
the argument as 7500 says that it will allow only
7500 packets/second to pass from it. Same is
the 12500 packets/second. The 2nd output of
classifier is directly connected to a queue which
is connected to Shaper case with the output 3
but here the limit element which also posses the
same functionality of passing only the limited
number of packets/second to its output port
but here the packets are not dropped instead
they are queued and will be dropped only when
the queue is full. The queue is also having the
verities of different dropping policies so that
you can drop the packets from the front or from
the end of the queue. And from the 3rd input

6

port the flow is first passed to the direct output
competing with other similar flows but if the
number of packets/second increases from
12500 then the overflowed packets are sent to a
lower priority queue which is works as the best
effort delivery.

Example 5: full-fledged IP router. Figure 7
shows the full-fledged bridge IP router
connecting two networks. Almost all the
network standards are taken care of in this
router configuration. So let’s describe some of
the important elements.

 FromDevice(…): This element gets the packet
from the device, set as the parameter of the
element. The element gets the interrupt from
the device and stores the packet in a temporary
queue and when the element gets scheduled by
the Click then it sends all the stored packets to
the next elements as per the packet content.

Classifier: This element checks the content of
the packet and based on its contents it forwards
the packet on one of its output. Here we are
classifying the packet based on its type, and
passes it accordingly to the next element.

ARPResponder: This element generates the
replies of the ARP requests sent to the router.
The table of contents of IP/Network to the
Ethernet address has to passed as the argument
as the part of initialization parameter.

Paint(…): This is the element just used as a flag
for the internal use of the Click to mark the
packet and you can identify the packet
afterwards based on the colour that packet is
painted of. Here we are checking that the packet
coming from the specific Ethernet port should
leave only from that Ethernet port.

Stripe(…): On the basis of what information is
passed to the element at the time of its
initialization, the Stripe element removes first
few bytes of information. Here it removes first
14 bytes of information which is essentially
removes the packet type the Ethernet address of
the sender and receiver.

LookupIPRouter(…): This is the element
forwards the packet comes to its input port by
looking in to its IP layer and based in its
destination IP and the configuration parameter

set at the time of its initialization, it forwards the
packet to one of the appropriate output port.

ICMPError: The element sends the reply based
on the error that is set at initialization time. So
whenever a packet comes in the reply for that
particular packet is generated. Here while the
conditions of PaintTee, IPGWOption,
DecIPTTL and, IPFragmenter are not satisfies
the error message should be generated so the
second output port which is usually used as the
outputting the error messages sent to the
ICMPError elements.

ARPQuerier(…): As we have seen the element
ARPResponder generates the replies of the ARP
requests that are coming from the input port.
This query messages are sent by the
ARPQuerier element for gating the Ethernet
address of the particular machine based on its IP
address.

4. Extensions of element

As we know Click’s design is completely
modular, so that we can merge the different
combinations and have a various combinations
of functionality. We can have verity of the
elements that we can merge such that we are
able to built very complex systems by simply
joining the different elements in specific order.
Let’s see some of the combinations that we can
build by the Click.

4.1 Differentiated services

Example 4 in the above section is actual
implementation if the differentiated service
where we have made the 4 different flows
treated differently based on the where they are
coming from. So the most important element in
this configuration is the Classifier that specifies
that which packet should follow which path.
And we can have various traffic limiters on the
different paths. Here the first 3 flows are the
having guaranteed service commitments and
they each are having the limit of number of
packet sent per second guarantee, which is
managed by the Meter element, while the last
flow coming out from the 4th output is the

7

Figure 7: full-fledged IP router Example - 5

8

best effort flow which will be only served if
there is no packet to send from the RoundRobin
element, which is collecting the packets from the
guaranteed customers.

Figure 8: Ethernet Switch

4.2 Ethernet switch

Figure 8 shows the implementation of the
Ethernet switch by the Click language. This
configuration works as a learning bridge
between two networks and forwards only those
particular packets that are destined to that
network. For example if some packet comes
from the input port eth0 and sometime after if
the same another packet comes from say eth1
having the same source IP address then the
router made the entry to its routing table that
the particular host is reachable from both of the
links. This configuration is compliant to the
original 802.1d standard, so that you can very
well have you other ordinary router working
with this Click configured PC router.

4.3 Mobility Extension

Click is also capable of supporting the IP-in-IP
protocol so now we can also implement the
Mobility extension that is required when a
mobile user roam in some foreign network with
the temporary address and still able to get all the
packets that are sent to its original address. As
Figure 9 shows the scenario where the mobile
host 1.0.0.11 is currently located on network 43,
where it has the temporary address 43.0.0.6. Its
home node, 1.0.0.10, should encapsulate packets
destined for 1.0.0.11 and forward them to
43.0.0.6.

Figure 9: Network configuration for Mobility Extension

Figure 10: Click Configuration for implementation
Mobility with IP-In-IP protocol

Assume that the configuration shown in Figure
10 is installed at the home node, 1.0.0.10. Here
the main element that performs the major part is
the Classifier by which the entire routing of the
packet is taken care of. As we know that Click is

9

completely defined by the flow of the packet so
if we can identify the packet where it is destined
to then we can very well process packets by the
use of suitable elements. So here we have
identified 5 different flows that can be arrived at
any time to the router. First flow is about the
ARP query which is directly responded by the
ARPResponder element. Second flow is
showing the packets that are coming from the
mobile node and are the IP-in-IP packets so the
home node gets the original packet after
stripping out the outer layer of the packet and
then it treats the packet as normal packet
received from the local user and do the
according job. The third case is the type of
packets that are received from other nodes and
are destined to the mobile node. So here the
home node itself creates the IP-in-IP packet and
forwards it to the appropriate destination. The
fourth case is for the ARP responses that need
to be generated for each of the ARP query. And
the fifth case is for any other packets type that
arrives at the home node.

5. Evaluation

The graphs and statistical-figures of this section are
referenced from the Eddie Kohler’s Thesis and Paper.
This section describes the experiments that are
performed by Eddie Kohler and his colleagues.
We will discuss about Click’s performance with
the Linux 2.2.16 kernel network stack. More
details about the experimental setup are
described in the Appendix. By performing the
experiments the author states that the bottleneck
is not the finicality or the CPU constraints that
are not capable of supporting this much
processing but the real bottleneck is the call of
the virtual function, the IO latency. The
statistics also suggests that the limitation of the
forwarding rate is because of the PCI bus
performance or the memory.

5.1 Forwarding rates

To check the maximum forwarding rate author
had performed an experiment in which they
wants to check that if we sent the packets from
a saturated host how many packets can be

forwarded without any loss. Here author sends
the 64 bytes of packets because the intention is
the forwarding rate is not depend on the
bandwidth but here the main bottleneck is the
per element processing of the packet so they
kept the packet size minimum and performed
the experiment. Here the Click configuration
used is showed in Figure 7, but here the input
and output interfaces are extended to 8 instead
of 2. So there are 161 elements, 19 elements per
interface and 9 elements are shared.

Figure 11 shows the graph that author got from
the experiment here they have compared the 3
ways of implementations. The Linux line shows
that it can forward very less amount of small
size packets and as the input rate increases the
forwarding rate decreases because of the use of
the calling procedures of the Linux networking
stack and slow table lookup algorithms. The
calling and returning of the function call is the
bottle neck of the forwarding rate. While in the
Linux with the polling mechanism of the Click
works far more batter then that of Linux basic
driver.

Figure 11: Experiment – 1 maximum forwarding rate

Let’s look at the statistics of the experiment.
Click's maximum loss-free forwarding rate is
357,000 packets per second. By having the
poling algorithm of the Click on the Linux
driver (Poling Linux) author had got the
maximum loss free sending rate of 308,000
packets per second. Here author has stated that
the no matter the forwarding rate of Click and
the Poling Linux is more exciting but they are
not scalable enough as the Linux IP routing
table lookup algorithm. So the scalability is still
the milestone to achieve in Click framework.

10

5.2 Comparison between IP router
configuration and non-IP router
configuration

Figure 12 shows the comparison between the IP
routers and non IP routers configurations. Here
we can see that the simple line is the Click
router’s simple configuration where there is no
processing done at the element level. By that
configuration the maximum loss free rate goes
to 452,000 packets per second. Here the rate is
limited by the PCI bus not by the CPU. Author
had done the same experiment with different
configurations as showed in the graph. By
analyzing the graph we can say that the even the
more complex flow of that a packet goes in or
adding more number of elements in the path of
the packet the performance is decreasing
gradually. And even after reaching the maximum
limit the performance does not goes down
instead remains at the same state giving
maximum possible forwarding rate.

Figure 12: Experiment – 2 Comparison between the IP
router and Non IP router

5.3 Forwarding cost per element

Author had take the experiment of they have
already performed with the 8 interfaced IP
routers and then checked the CPU time taken by
each any every event. Figure 13 shows the
results that they have got. Here the time is in
nanoseconds and cost was measured by Pentium
III cycle counters. Each measurement is the
accumulated cost for all packets in a 10-second
run divided by the number of packets
forwarded. And as the counter is also costing a
large CPU usage to process this information we
can say that these figures are also more than the
actual statistics.

There are various operations that cost the CPU
timing they are as follows:

Packet Polling: This is the time, PollDevice
takes to read the packets from the Tulip's
receive DMA ring.

Task Time
(ns/packet)

Polling packet 562
Refill receive DMA ring 139
Click forwarding path: push 1572
Click forwarding path: pull 85
Enqueue packet for transmit 135
Clean transmit DMA ring 412
Total 2905
Figure 13: CPU time cost breakdown for the Click IP

router

Element Time
(ns/packet)

Classifier 70
Paint 77
Stripe 67
CheckIPHeader 457
GetIPAddress 120
LookupIPRoute 140
DropBroadcasts 77
PaintTee 67
IPGWOptions 63
FixIPSrc 63
DecIPTTL 119
IPFragmenter 29
ARPQuerier 206
Total 1455

Figure 14: Execution times of some of the individual
elements involved in IP forwarding

Refill receive DMA ring: After taking the
packet from the Tulip’s DMA ring PollDevice
adds a new descriptors to the receive DMA ring
so that the Tulip may receive more packets. The
time taken to add new descriptor cost is marked
as Refill receive DMA ring.

11

Click forwarding path: This is the time taken
by the packet to traverse from the IP routers
configuration and reached at the end. The time
consumed by Linux's equivalent of the push
path is 1.65 µs, slightly more than Click's 1.57
µs.

Enqueue packet for transmit: This is the time
ToDevice spends placing a packet on the Tulip's
transmit DMA ring.

Clean transmit DMA ring: ToDevice must
also remove transmitted packets from the DMA
ring; this cost is measured by “Clean transmit
DMA ring”.

The Click push forwarding path is by far the
most expensive task. Overall, Click code takes
60% of the time required to process a packet;
device code takes the other 40%.

Figure 14 shows the per element processing
time. Where we can see that the processing time
is different for each of the element. The most
expensive element CheckIPHeader because of it
first has to locate the packet start byte and then
has to compute the offset to check the IP. So it
requires more number of IO commands. While
the IPFragmenter takes the smallest time
because as we have used only 64 bytes fixed size
packets none of the packet needs to be
fragmented so the IPFragmenter simply
forwards all the packets without any processing.
As we required at least one virtual function call
that only costs 29 µs so that performing any
operation on packet will take at least the amount
that every element is already taking so that we
have very less possibility of optimization but still
after applying the different optimization
algorithms to the Click configurations author
have achieved 30% of the improvement in the
time requirement. The most optimization is
done at the Classifier element that is 24% of
improvement can be seen.

6. Limitation and future work

We can say that the Click has successfully
achieved the goal of the keeping the language
simple and readable. The language is also very
well processed by the custom built tool. And can

very well be parsed. Any tool never be complete
there is always something to add into it, that can
be a new feature, some plug-in, some bug, or
some latest technologies implementation in the
related field. So is the case with Click, Click has
most of the elements that are required to
implement most of the configurations available
today. But some implementations required
coarse grained implementation, like BGP routers
concepts where there is need of dynamic
implementation of the policies is not easily
implementable with Click.

The compound elements can very well created
with the use of abstractions that is provided by
the Click but the compilation of the router still
open ups the abstraction, so weather it’s an
abstraction at the user level at the internal level
it is still the same full structure. So we are not
getting any advantage of creating abstraction at
the performance level instead this abstraction is
creating the overhead making the more complex
and hits the performance level, because it takes
more time to process than that of native
elements.

Click is having the internal CPU scheduling that
makes it simpler to implement the routers in the
learning mode. But as we move to the
implementation at the real-time level we need to
optimize the router for the batter performance
and we do not have any control over the CPU
scheduling

7. Related work

There has been several proposal suggested in
this area. And many of them have got some
advantages and some disadvantages. Most of the
implementations are having not having enough
communication between the network and user
level. So they failed to get enough advantage of
the network properties. For example x-kernel
has the much of the same structure as Click, it
has nodes instead of the elements of Click, it
also generates the graph and the packets are
passed through the graph but the graphs in x-
kernel cannot be cyclic by the configuration and
it has the layered structure that prevents some of
the native functionality that we need to have
while developing network router, like the IP

12

router needs to have recursive call to itself but it
is not possible in this configuration.

One more implementation called Scout was also
developed by Abhiram Khune, that is
specifically designed to support the real-time
and Quality of service applications. The system
was powerful enough to have a firm end-to-end
latency. So this was better suited then that of x-
routers. It was also having support of the cyclic
paths that was the main advantage over x-kernel
mechanism.

8. Conclusion

Click is one of the most successful software
router developed that is so close to the actual
networking stack implementation. The
flexibility, modularity and the easiness of
developing new router configurations makes it

more successful. Due to the modularity there is
no limit of the extensibility of the router. It has
the compatibility with the traditional routers that
are available today in the market. And the easy
to implement language of Click makes it even
more attractive. The declarative style of the
router configuration makes the configuration
even readable by the tools so that it can be
automatically parsed by the tools and also can be
optimized by the language processing tools. The
experiments that author had performed shows
that the Click is having enough performance
that can be even enhanced by the optimized use
of the elements or by performing the
optimization on the elements themselves to
have a fine-tuned router for a particular
scenario. By the experiments performed by the
author we analyzed that by applying the
optimization we can reduce the CPU usage by
34%. And the still we can achieve the maximum
forwarding rate of 400,000 minimum-size
packets per second.

13

A. Bibliography

[1] Kohler, Eddie. The Click Modular Router.
17th Symposium on Operating Systems Principles,, December 1999.

[2] Kohler, Eddie, Robert Morris, Massimiliano Poletto. Modular Components for Network Address
Translation. Rome Laboratory under agreement number F30602-97-2-0288.

[3] Kohler, Eddie. Click for Measurement.
UCLA Computer Science Department Technical Report TR060010, February 2006

14

B. Appendix

1. Experimental Setup(Taken from Eddie Kohler’s Thesis)

The experimental setup consists of a total of nine Intel PCs running a modified version
of Linux 2.2.16. The PCs are patched by the Click modules with the kernel mode. Out of
the 9 machines 4 works as the source hosts, 4 machines works as the destination nodes and
one node works as the router. The router host has eight 100 Mbit/s Ethernet Controllers
connected, by point-to-point links, to the source and destination hosts. During a test, each
source generates an even flow of UDP packets addressed to a corresponding destination;
the router is expected to get them there.

The router host has a 700 MHz Intel Pentium III CPU and an Intel L440GX+
motherboard. Its eight DEC 21140 Tulip 100 Mbit/s PCI Ethernet controllers [13] are on
multi-port cards split across the motherboard's two independent PCI buses. The Pentium
III has a 16 KB level-1 instruction cache, a 16 KB level-1 data cache, and a 256 KB level-2
unified cache. The source and destination hosts have 733 MHz Pentium III CPUs and 200
MHz Pentium Pro CPUs, respectively. Each host has one DEC 21140 Ethernet controller.
The source-to-router and router-to-destination links are point-to-point full-duplex 100
Mbit/s Ethernet.

The source hosts generate UDP packets at specified rates, and can generate up to
147,900 64-byte packets per second; the destination hosts count and discard the forwarded
UDP packets. Each 64-byte UDP packet includes Ethernet, IP, and UDP headers as well as
14 bytes of data and the 4-byte Ethernet CRC. When the 64-bit preamble and 96-bit inter-
frame gap are added, a 100 Mbit/s Ethernet link can carry up to 148,800 such packets per
second.

